Optimal switching using coherent control
نویسندگان
چکیده
منابع مشابه
Optimal Control for Switching Systems
The notion of switching system generalizes the idea of a `diierential equa-tion': a switching system consists of a number of modes (e.g., diierential equations) together with a set of switching rules. Such systems arise in mod-eling thermostats (and other devices involving`hysteresis'), in considering the evolution of a multimodal (variable structure) system for which`feedback control' has been...
متن کاملCoherent optimal control of photosynthetic molecules
F. Caruso,1,2 S. Montangero,3 T. Calarco,3 S. F. Huelga,1 and M. B. Plenio1 1Institut für Theoretische Physik, Universität Ulm, Albert-Einstein-Allee 11, D-89069 Ulm, Germany 2LENS and Dipartimento di Fisica e Astronomia, Università di Firenze, I-50019 Sesto Fiorentino, Italy 3Institut für Quanteninformationsverarbeitung, Universität Ulm, Albert-Einstein-Allee 11, D-89069 Ulm, Germany (Received...
متن کاملA Simple Theory of Optimal Coherent Control
By combining the theories of optimal control and coherent control, we derive an analytical formulation to evaluate the optimal 1-photon and n-photon fields together with their relative phase and intensity in the optimal “1 + n”-coherent control scheme. The optimal coherent control exploits tailored light pulses to produce the best overlap with a predefined nuclear target in an electronically de...
متن کاملSolving Singular Control from Optimal Switching
This report summarizes some of our recent work (Guo and Tomecek (2008b,a)) on a new theoretical connection between singular control of finite variation and optimal switching problems. This correspondence not only provides a novel method for analyzing multi-dimensional singular control problems, but also builds links among singular controls, Dynkin games, and sequential optimal stopping problems.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Physics Letters
سال: 2013
ISSN: 0003-6951,1077-3118
DOI: 10.1063/1.4789372